The benefits of high power laser treatment

Laser therapy devices have been used as an adjunct in physical therapy treatments for decades, providing pain relief for injured muscles and joints.1 However, in the past these devices tended to be relatively low in power, requiring extended periods of use to provide therapeutic effects.

Nowadays, more modern devices are capable of delivering therapeutic light energy much faster, but what exactly are the benefits of high power laser treatment?

What is laser therapy?

Laser therapy, or photobiomodulation, applies light energy to the body with the aim of promoting healing. Laser radiation is absorbed in the cell mitochondria and converted into energy (ATP) by the cell, which helps synthesize protein and stimulate the creation of new cells. This leads to the normalization of the affected region by promoting a reduction in swelling, relieving pain, and accelerating the tissue repair process.2

Low level laser therapy devices have an output measured in mW, meaning the time to deliver therapeutic amounts of light energy can make them inefficient, especially when treating deep-lying injuries or large areas such as quadriceps.

High power laser therapy devices, on the other hand, have multiple Watts of power, greatly reducing the treatment times of even large or deep structures. This makes high power laser treatment an effective and practical physical therapy modality.

What are the benefits of high power laser treatment?

From reducing pain to improving mobility, studies have shown there are many documented benefits of high power laser treatment.

Increased hamstring force

In a study by Verma et al. (2022),3 high power laser therapy was used on two groups of athletes with proximal hamstring tendinopathy. The group receiving high power laser therapy in addition to conventional physiotherapy showed an increase in hamstring force (Isokinetic Peak Torque in Nm) of 13% after treatment, compared to 1.5% in the group that received only conventional physiotherapy.

Better shoulder mobility

Atan et al.’s 2021 study4 Involved using high power laser therapy to treat patients with frozen shoulder. Those in the group that received high power laser and exercise showed 60° better shoulder mobility after treatment compared to 38° in the group that used only exercise.

Less tennis elbow pain

A study by Roberts et al. (2013)5 demonstrated that patients who received eight sessions of high power laser treatment experienced a 93% decrease in tennis elbow pain and a 71% improvement of function in the joint. This was compared to no improvement in pain and worsening function in the placebo control group.

Reduced jaw pain

In Ekici’s 2022 study,6 patients with temporomandibular disorder who were treated with high power laser experienced a 55% decrease in jaw pain, compared to 4% of those treated with a placebo laser.

Less carpal tunnel pain

Ezzati et al. (2020)7 showed that patients treated with high power laser therapy benefitted from 68% less carpal tunnel pain compared to 30% with low level laser therapy when using the same fluence (8J/cm.)

Less knee osteoarthritis pain

The knee osteoarthritis patients in Kim et al.’s 2016 study8 experienced 38% more pain relief and 37% additional functional improvement than those who were only given conventional physical therapy.

Less back pain

Patients with lumbar disc protrusion who took part in Chen et al.’s 2018 study9 had 25% more pain relief when high power laser treatment was added to traction therapy than when they received traction therapy alone.

The benefits of LightForce® high power laser therapy

In the field of high power laser treatment, Chattanooga’s® LightForce® laser therapy devices stand out. These products have been used to deliver an estimated 1.2 million treatments per month in 29 countries around the world, enabling clinicians to provide their patients with the beneficial effects of high power laser therapy.

Chatterjee et al.’s 2019 study10 showed that LightForce laser therapy added to standard of care for neuropathic pain resulted in a 30% greater improvement in pain compared to standard of care with placebo laser in patients with diabetic neuropathy.

The same study also demonstrated a 42% greater improvement in quality of life. Furthermore, no side effects or adverse events were reported during the study period, adding to the evidence that high power laser treatment for musculoskeletal disorders is a safe technique.11

LightForce laser therapy

Customers seeking to offer high power laser therapy can choose from three different LightForce devices, each with their own maximum level of power:

LightForce® FXi Therapy Laser – 15W

Portable but powerful

Although lightweight, with a maximum power of 15W, the FXi still has more than enough energy to enable fast, effective laser treatments. Weighing just 3.2kg and with a rechargeable battery that lasts for up to half a day on a single charge, the FXi is a great choice for physios looking to bring the clinic to the patient.

LightForce FXi

LightForce® XPi Therapy Laser – 25W

The next step in laser therapy

Boasting a maximum power of 25W, the XPi makes treating patients even faster. And with its smart handpiece providing real-time visual and haptic feedback on dosing speed, users can be even more confident in delivering effective high power laser treatment.

LightForce XPi

LightForce® XLi Therapy Laser – 40W

Maximum power, maximum efficiency

For the busiest practices, the LightForce® XLi provides maximum benefit. With an impressive top power of 40W and the XL Treatment Cone included, clinicians greatly reduce the time needed to treat effectively, allowing them to fit more patients into their daily schedule.

LightForce XLi

You can download our infographic on the benefits of high power laser therapy here:

To learn more about LightForce therapy lasers visit

As laser light can damage the eye, make sure to wear protective glasses during your treatment and never look into the laser beam.


  1. Kitchen, S. S. & Partridge, C. J. (1991). A Review of Low Level Laser Therapy: Part I: Background, Physiological Effects and Hazards. Physiotherapy 77(3): 161-168.
  2. da Silva, J.P., da Silva, M.A., Almeida, A.P., Lombardi Junior, I., Matos, A.P. (2010). Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg. Feb;28(1): 17-21.
  3. Verma, S., Esht, V., Chahal, A., Kapoor, G., Sharma, S., Alghadir, A.H., Khan, M., Kashoo, F.Z., Shaphe, M.A. (2022). Effectiveness of High Power Laser Therapy on Pain and Isokinetic Peak Torque in Athletes with Proximal Hamstring Tendinopathy: A Randomized Trial. Biomed Res Int. May 20;2022:4133883.
  4. Atan, T., Bahar-Ozdemir, Y. (2021). Efficacy of high-intensity laser therapy in patients with adhesive capsulitis: a sham-controlled randomized controlled trial. Lasers Med Sci. Feb;36(1):207-217.
  5. Roberts, D.B., Kruse, R.J., Stoll, S.F. (2013). The effectiveness of therapeutic class IV (10 W) laser treatment for epicondylitis. Lasers Surg Med. Jul;45(5):311-7.
  6. Ekici, Ö., Dündar, Ü., Büyükbosna, M. (2022). Effectiveness of high-intensity laser therapy in patients with myogenic temporomandibular joint disorder: A double-blind, placebo-controlled study. J Stomatol Oral Maxillofac Surg. Jun;123(3):e90-e96.
  7. Ezzati, K., Laakso, E.L., Saberi, A., Yousefzadeh Chabok S., Nasiri, E., Bakhshayesh Eghbali B. (2020). A comparative study of the dose-dependent effects of low level and high intensity photobiomodulation (laser) therapy on pain and electrophysiological parameters in patients with carpal tunnel syndrome. Eur J Phys Rehabil Med. Dec;56(6):733-740.
  8. Kim, G.J., Choi, J., Lee, S., Jeon, C., Lee, K. (2016). The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis. J Phys Ther Sci. Nov;28(11):3197-3199.
  9. Chen, L., Liu, D., Zou, L., Huang, J., Chen, J., Zou, Y., Lai, J., Chen, J., Li, H., Liu, G. (2018). Efficacy of high intensity laser therapy in treatment of patients with lumbar disc protrusion: A randomized controlled trial. J Back Musculoskelet Rehabil. Feb 6;31(1):191-196.
  10. Chatterjee, P., Srivastava, A.K., Kumar, D.A., Chakrawarty, A., Khan, M.A., Ambashtha, A.K., Kumar, V., De Taboada, L., Dey, A.B. (2019). Effect of deep tissue laser therapy treatment on peripheral neuropathic pain in older adults with type 2 diabetes: a pilot randomized clinical trial. BMC Geriatr. Aug 12;19(1):218.
  11. Arroyo-Fernández, R., Aceituno-Gómez J, Serrano-Muñoz, D., Avendaño-Coy, J. (2023). High-Intensity Laser Therapy for Musculoskeletal Disorders: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Clin Med. Feb 13;12(4):1479.

The link between COVID-19 and heel pain

Since the COVID-19 pandemic began in 2020, the number of patients reporting heel pain has risen. The condition is now so common it has come to be known as “pandemic foot”. Is there really a link between COVID-19 and heel pain, and if so, what treatment options are available?

What is plantar fasciitis?

While “pandemic foot” might be a catchy name, the correct medical term is plantar heel pain, or plantar fasciitis. This condition presents as pain felt on the bottom of the foot around the heel and arch. It is an overuse condition often associated with runners, especially those over the age of 40.

Excessive pressure on the foot, along with a tight calf or Achilles tendon, can cause inflammation of the plantar fascia, the thick band of tissue on the bottom of the foot connecting the heel to the toes.

The pain is commonly felt during the first step, as well as during weight-bearing tasks, particularly after periods of rest.1 Patients often report the pain at its worst as they take their first steps of the day after getting out of bed. It typically decreases as the calf and Achilles tendon become looser during activity, only to return the following day after things have tightened up again during the night.

Does COVID-19 cause plantar fasciitis?

There is no current evidence to suggest there is a direct link between COVID-19 and heel pain. Instead, the rise in plantar fasciitis is more likely to be due to the changes in our daily lives the pandemic has brought about.

Gym attendances have declined since the beginning of the pandemic, with outdoor running and walking becoming more popular instead. More running and walking mean more stress on the plantar fascia, which, due to an increase in flexible working, can be exacerbated by more time spent walking around at home in bare feet, slippers, or flip-flops.

Without the additional support that a heeled shoe can provide, like those typically worn in office environments, the foot spends more time in a flat position, which, for extended periods, can put additional strain on the fascia. Add to this stiff muscles and tendons from running, and you have a recipe for plantar fasciitis. This is the indirect link between COVID-19 and heel pain.

How can heel pain be treated?

There are a number of conservative treatment options for plantar fasciitis. They range from relatively simple orthotics to more advanced rehabilitation devices.

Taping for heel pain

Physio tape (also known as kinesiology tape) like Chatt-Tape is elastic adhesive tape that can be applied to parts of the body to aid healing and recuperation of the soft tissue.2

Tape can be applied to the heel, ankle, and underside of the foot to release tension in the plantar fascia as well as stabilize it. A study by Tezel et al. (2020) showed that kinesiology tape provided pain relief and improved quality of life for patients with plantar fasciitis, as well as improved functionality.3

Chatt-Tape plantar fasciitis
Aircast AirHeel and Dorsal Night Splint

Bracing for heel pain

Plantar fasciitis can be relieved by wearing an orthotic during the night to help reduce the tightening of the calf muscles and Achilles tendon.4 One such device is Aircast’s Dorsal Night Splint; this product is worn while the patient sleeps, to maintain the position of the foot at 90°, thereby helping to stretch the calf and Achilles tendon.

Another type of foot orthosis for plantar fasciitis is a pneumatic ankle brace. Also from Aircast, the AirHeel is designed to treat plantar fasciitis, Achilles tendonitis, and heel pain. Using two interconnected aircells located under the foot arch and in the back of the heel, the brace applies pulsating compression with every step to help reduce swelling and discomfort and enhance circulation.

Kavros’s 2005 study showed that patients with higher plantar fasciitis pain experience faster relief with the Airheel than with a shoe insert.5

Shock wave therapy for heel pain

Shock wave therapy is an electronic modality that uses acoustic waves to stimulate the body on a cellular level for healing purposes. Generally divided into focused shock wave (F-SW) and radial pressure wave (RPW) therapy, shock wave therapy has been shown to be a clinically proven treatment option for plantar fasciitis, especially when treatments like taping have not been successful.1

In a 2022 study by Wheeler et al., RPW treatment provided significant improvement of pain and function in patients with chronic plantar fasciopathy.6

Intelect 2 RPW
LightForce laser therapy

High power laser therapy for heel pain

High power laser therapy, like that offered by LightForce, uses the energy of focused light to trigger the body’s natural healing processes, thereby speeding recovery.

Ordahan et al.’s 2018 study demonstrated that high power laser therapy provided improvement of pain and function in patients with plantar fasciitis.7

Combining laser therapy with shock wave therapy has shown to be even more effective.8

To learn more about products for heel pain, visit


  1. Morrissey, D., Cotchett, M., Said J’Bari, A., Prior, T., Griffiths, I. B., Rathleff, M. S., Gulle, H., Vicenzino, B., & Barton, C. J. (2021). Management of plantar heel pain: a best practice guide informed by a systematic review, expert clinical reasoning and patient values. British journal of sports medicine, 55(19), 1106–1118.
  2. Homayouni, K., et al. (2013). Comparison between kinesio taping and physiotherapy in the treatment of de Quervain’s disease. J. Musculoskelet. Res. 16(4).
  3. Tezel, N., Umay, E., Bulut, M., Cakci, A (2020). Short-Term Efficacy of Kinesiotaping versus Extracorporeal Shockwave Therapy for Plantar Fasciitis: A Randomized Study. Saudi J Med Med Sci. Sep-Dec;8(3):181-187.
  4. Powell, M., Post, W. R., Keener, J., & Wearden, S. (1998). Effective treatment of chronic plantar fasciitis with dorsiflexion night splints: a crossover prospective randomized outcome study. Foot & ankle international, 19(1), 10–18.
  5. Kavros, S. J. (2005). The efficacy of a pneumatic compression device in the treatment of plantar fasciitis. Journal of applied biomechanics, 21(4), 404–413.
  6. Wheeler, P. C., Dudson, C., & Calver, R. (2022). Radial Extracorporeal Shockwave Therapy (rESWT) is not superior to “minimal-dose” rESWT for patients with chronic plantar fasciopathy; a double-blinded randomised controlled trial. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons, 28(8), 1356–1365.
  7. Ordahan, B., Karahan, A. Y., & Kaydok, E. (2018). The effect of high-intensity versus low-level laser therapy in the management of plantar fasciitis: a randomized clinical trial. Lasers in medical science, 33(6), 1363–1369.
  8. Takla, M. K. N., & Rezk, S. S. R. (2019). Clinical effectiveness of multi-wavelength photobiomodulation therapy as an adjunct to extracorporeal shock wave therapy in the management of plantar fasciitis: a randomized controlled trial. Lasers in medical science, 34(3), 583–593.

How Chattanooga products are supporting neurological rehabilitation

As a manufacturer of rehabilitation equipment, there are few things we find more rewarding than witnessing the positive difference our products can make to people’s lives. This is why the story of Chattanooga’s latest Center of Excellence is so inspiring.

A Chattanooga Center of Excellence (CoE) is a facility recognized for its contribution to the improvement of patient rehabilitation. Recognition can be earned on the basis of clinical practice, educational initiatives or expertise, or clinical research in the fields of sport rehabilitation and orthopaedics, pain management, neurology, or long-term care. All Chattanooga Centers of Excellence have expertise in one or more Chattanooga physical medicine modalities or technologies.

Our latest CoE is Spain’s DACER clinic. Based in Madrid, DACER is a rehabilitation center specializing in the treatment of adults and children with neurological injuries. Using products supplied by Enovis Spain, it helps its patients to make what many people might consider to be small steps, but which they experience as massive gains.

The DACER team receiving their Chattanooga Center of Excellence Certificate

One such patient is Lucas de Ulucia. In 2019, Lucas’s professional motorcycle racing career was tragically cut short when an accident left him quadriplegic. Though he was informed by doctors at Spain’s leading neurology clinic that progress was unlikely, Lucas refused to accept their prognosis, and instead turned to DACER for help.

Two years later, thanks to intensive daily training supported by DACER’s dedicated team of professionals and Chattanooga rehab products, Lucas has regained a significant amount of mobility and greatly improved his quality of life.

Lucas de Ulucia

No head injury is too severe to despair of, nor too trivial to ignore.

Quote by Hippocrates, seen on the wall of DACER center

Standing quietly in the background of this story is Xavier Cardona, General Manager of Enovis Spain. Xavi’s relationship with DACER goes back more than a decade to when he introduced its clinicians to VitalStim for dysphagia. Since then, the clinic’s portfolio of Chattanooga products and associated expertise has grown to the point that it has achieved the status of Chattanooga Center of Excellence. The center now acts as a key opinion leader in its field, educating physical therapists from around Spain and Latin America, as well as providing a practical training environment for Chattanooga products.

When Xavi visited DACER last month to present them with their certificate, he was met with an award of his own in recognition of the support he has provided them over the years. It’s clear to see the admiration both parties have for one another, as well as the dedication they share for improving the lives of patients through rehabilitation.

And while both awards were gratefully received, it’s safe to say neither are as rewarding for their recipients as the satisfaction of seeing patients like Lucas reclaiming their freedom through movement.

Xavi (right) receiving his award

Application guidelines for radial pressure wave therapy

Radial pressure wave (RPW) therapy can be used on a range of anatomical structures, each requiring different application techniques and parameters. These treatments can be combined in a session depending on the pathology and the condition.

Treating trigger points with RPW therapy

RPW therapy can help release trigger points and reduce the associated pain.

Patient position

Place the patient in a relaxed position with the affected muscles slightly stretched. Observe the level of pain experienced and reduce the stretch if necessary.

RPW transmitters

The most commonly used transmitters for trigger point treatment have a diameter of 15 mm or 20 mm, with 20mm myofascial transmitters being the most effective.


The application pressure for trigger point treatment varies between 1 and 5 bar, depending on the transmitter size and the patient’s rating of pain intensity, which should not exceed grade 5 to 7 on a Visual Analogue Scale.


The therapeutic pulse frequency is 4 to 20 Hz. In general, higher frequencies seem to be more tolerable than low frequencies.

Number of pulses per trigger point

As the objective should be to reduce the patient’s pain by at least half, the number of RPW pulses required depends on the envisaged degree of pain relief. Once the desired pain reduction level has been reached, move on to treat the next trigger point in the same way. Typically the range of shocks will lie between 1,000-2,000.

Number of pulses per session

This depends on the patient’s condition, but the total number of pulses to be applied can reach 6,000 to 10,000 depending on the treatment surface, divided between local treatment and large-area muscle treatment. It is recommended that no more than 6,000 shocks should be applied over a specific point.

Area to be targeted

Treat active trigger points as well as satellite trigger points in the area of referred pain. If trigger points cannot be identified, target painful muscle spots. Bear in mind active myofascial trigger points refer distally and may present as an insertional tendinopathy.

Application technique

Hold the applicator at a right angle to the muscle surface to have the shortest possible distance to the target area. RPW devices with 5 bar of pressure and a good quality 20 mm diameter transmitter have been shown to have a maximal penetration depth of 7.60 mm. Ensure the transmitter stays in close contact with the skin without pressing too hard; firm pressure is only required with inferior handpieces. Treating over bone is not harmful but can cause severe discomfort, so patients should be informed for their consent. Treatment directly over the spine or to the head is contraindicated.

Treating tendons and tendon insertions with RPW therapy

Application techniques

Use small circular movements on the pain points along the tendon both medially and laterally using the stamping technique described below.

Treating muscles with RPW therapy

Two different techniques can be used:

  • Smoothing

To reduce muscle tone, move the applicator slowly along the skin surface in the direction of the muscle fibre, working from distal to proximal, without exerting pressure, but keeping the transmitter touching the skin via the transmission gel.

  • Stamping

Using the same treatment parameters and application direction as for muscle smoothing, apply 30 to 50 radial pressure waves to an identified trigger point or painful area at medium contact pressure before moving the applicator by the width of the transmitter head to the next application site. So named because this technique leaves a ‘stamping pattern’ (temporary redness) due to increased blood flow that quickly resolves.

Number of pulses

500 to 6,000 pulses, depending on pain intensity and the size of the muscles and muscle groups. For example, quadriceps, hamstring, gluteal, and calf muscles require 6,000 pulses using a smoothing technique.

Treating fascia with RPW therapy

The fascial system is one continuous structure that exists from head to toe without interruption. A healthy fascia is elastic and can glide along other fascial structures, but if this gliding quality is restricted, so-called adhesions occur in the system. Because of the interconnection of the fascia, the effects of fascial adhesions can spread through the entire kinetic chain. RPW therapy can help release connective tissue adhesions and constrictions.

In myofascial release, the restricted tissues are manipulated to promote normal sliding and gliding movements of muscles and fascia. RPW fascia transmitters deliver pressure waves tangentially into the tissue instead of vertically to optimize the required movement of the tissue layers. Applications with these transmitters are not carried out at a 90° angle as with other RPW transmitters, but at 45° instead.

Please see the user manual of your RPW device for a full list of clinical indications, contraindications, warnings, and precautions.

Practical guidelines for radial pressure wave therapy

Before beginning radial pressure wave (RPW) therapy, there are a number of parameters and general practices to be aware of to help achieve positive outcomes.

Commencing an RPW treatment

You should begin a radial pressure wave therapy the same way you would any other treatment session:

  • Make your assessment of the patient’s condition
  • Establish objective and/or subjective markers
  • Educate the patient on the positive and negative aspects of the modality in order to gain informed consent

To the last point, it often helps to let the patient hear the sound of a working RPW applicator before starting treatment, as the sound can be quite loud and potentially off-putting. Just assure them the clicking they hear is only the sound of the projectile striking the transmitter, which is how the pressure waves are created.

Potential side effects of RPW therapy

It is important that the patient understands that, following RPW therapy, minor side effects may occur, usually within 1-2 days of the initial treatment. These include:

  • Reddening skin – the cardinal signs of inflammation, which the therapy is intended to promote
  • Swelling
  • Pain
  • Hematoma
  • Petechiae – the appearance of small red dots on the skin. This can be substantially reduced by applying plenty of water-based transmission gel to the area before you begin treating it, as radial pressure waves travel better through water.
  • Skin lesions – may occur following a previous cortisone therapy

These side effects generally abate within 5-10 days, but treatment should not be repeated until they have diminished.

Parameters for RPW treatment


Radial pressure waves are administered via a transmitter attached to a hand-held applicator. RPW transmitters come in different sizes, shapes, and materials, offering different profiles of wave penetration. This makes it advantageous for clinicians to have a wide range of transmitters at their disposal.

As half of the force amplitude of a pressure wave is lost in the first 10mm of penetration, it is important to know how much energy flux density (EFD) an RPW transmitter produces. Not all manufacturers provide these values, and when they do, they are usually shown as maximum bar pressure at skin level.

Also, not all manufacturers’ RPW transmitters are created equal; due to differences in quality, some transmitters are capable of providing better EFD than others.

Radial pressure waves are administered via a transmitter attached to a hand-held applicator. RPW transmitters come in different sizes, shapes, and materials, offering different profiles of wave penetration. This makes it advantageous for clinicians to have a wide range of transmitters at their disposal.

As half of the force amplitude of a pressure wave is lost in the first 10mm of penetration, it is important to know how much energy flux density (EFD) an RPW transmitter produces. Not all manufacturers provide these values, and when they do, they are usually shown as maximum bar pressure at skin level.

Also, not all manufacturers’ RPW transmitters are created equal; due to differences in quality, some transmitters are capable of providing better EFD than others.


Clinical research on RPW in plantar fasciitis has shown that the higher the energy values used during a treatment, the fewer the number of treatments required, and the better the outcome in chronic conditions.1 However, the higher the EFD, the less the patient is likely to be able to tolerate the associated discomfort. Therefore it is important to begin treatment at a low energy value, before gradually increasing to the maximum level that the patient can tolerate. As always, observation and communication are key.

In their systematic review on shock wave therapy, Schmitz et al. (2015) state that the most effective parameters for treating individual pathologies have yet to be determined. The current ‘optimal’ protocol across all conditions appears to be 2,000 shocks applied once a week at the maximum tolerable intensity.


Thanks to the adjustable frequency controls on RPW devices, pulses can be administered at different rates. Higher frequencies result in shorter treatment times and have been reported in anecdotal clinical evidence to be more tolerable.

General guidelines and tips

  • Once you’ve localized the painful areas you plan to treat, it can be helpful to mark these with a felt pen.
  • Some applicators can be heavy to hold, so it’s important to find a comfortable grip that can be maintained for the duration of the treatment.
  • Make sure to apply a generous amount of transmission gel to the skin overlying the treatment area, as this will help the pressure waves propagate into the tissue.
  • While application techniques are dictated by indication, small circular movements can be used to treat the most painful spots.
  • During tendon treatment, it can be beneficial to keep the tendon in a slight stretch.
  • Perform post-treatment assessments to see if there is a decrease in pain, and better function.

For a full list of indications, contraindications, precautions, and warnings, refer to the user manual of your RPW device.


  1. Malliaropoulos N, Crate G, Meke M, Korakakis V, Nauck T, Lohrer H, Padhiar N. Success and Recurrence Rate after Radial Extracorporeal Shock Wave Therapy for Plantar Fasciopathy: A Retrospective Study. Biomed Res Int. 2016;2016:9415827.
  2. Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, Furia JP. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115-38.

An introduction to LightForce® Therapy Lasers

Laser therapy is a clinically proven effective adjacent treatment modality in the physical therapy practice intended for the relief of painful muscles and joints associated with acute and chronic tissue injuries1. It is also indicated for helping relieve pain and stiffness associated with osteoarthritis through its ability to increase localized blood flow.2

Although Low Level Laser Therapy (LLLT) devices have been used in physical therapy treatments for decades3, their relative low power means treatment times are excessive and impractical when treating larger areas and/or deeper tissues.

However, High Power Laser (HPL) therapy devices are capable of delivering sufficient power (at a level of Watts compared to the mW output of LLLT devices) to achieve therapeutic dosage without prolonging the application time. This allows treatment of a wider range of indications including deep and large structures within reasonable times, making HPL both an effective and practical physical therapy modality.

LightForce Deep Tissue Therapy Lasers

In the field of therapeutic laser technology, LiteCure® has long been one of the market’s leading manufacturers, with its LightForce® range of products used to deliver an estimated 1.2 million treatments per month in 29 countries around the world. Founded in 2006, the company has recently been acquired by DJO®, a leading global provider of medical technologies. By adding LiteCure to its portfolio, DJO plans to further increase the global presence of LightForce products and make their therapeutic value available to even more clinicians and patients.

All three devices share a set of core features which work together to provide users with safe, user-friendly, and controllable functionality, so that no matter which model they choose they can be assured of a positive and effective user experience.

LightForce Therapy Lasers – three different devices to meet your needs

Customers looking to introduce high power laser therapy into their practice have three different LightForce devices to choose from, each with its own maximum level of power, ranging from 15W to 40W.

All three devices share a set of core features which work together to provide users with safe, user-friendly, and controllable functionality, so that no matter which model they choose they can be assured of a positive and effective user experience.

LightForce® XLi Therapy Laser – 40W

Increased power, for the busiest practices treating the most challenging cases.

Capable of delivering up to 40W of power, the LightForce® XLi is the most powerful device in the range. Its increased power reduces the time needed to apply a therapeutic dose of light energy, and with real-time dosing feedback and the XL Treatment Cone, deeper structures can be treated faster over larger areas, all of which helps clinicians to increase the efficiency of their practice.

LightForce® XPi Therapy Laser – 25W

As above, but with a maximum of 25W of power.

LightForce® FXi Therapy Laser – 15W

A portable unit for practices treating in multiple locations in or out of the office.

At 3.2 kg, the LightForce® FXi is easy to transport, with a rechargeable battery that lasts for up to half a day on a single charge, making it the ideal choice when you need to bring the treatment to the patient. And despite its more compact size and lighter weight, with up to 15W of power it still has the energy to deliver effective laser treatments in short amounts of time.

LightForce devices benefit from the following features:

Empower IQ

LightForce’s Empower IQ delivery system gives the user real-time feedback on treatment speed to help them treat effectively. Each device’s hand-held laser applicator comes equipped with a sensor that tracks its speed during treatment and feeds back to the user via a colour-coded light. As soon as they begin treating too slowly the light changes from green to red to indicate they need to speed up; go too fast and it will turn yellow to tell them to slow down.

*Not included with LightForce FXi

Built-in protocols

LightForce products feature in-depth protocol settings that detect which head is in use and recommend the appropriate power level. This helps guide the user in matching applicator heads to power output levels, giving them extra confidence during treatments and reducing learning time.

influence® technology

influence® technology helps guide LightForce users in using the appropriate treatment settings for their patients. Simply enter the patient’s parameters based on condition, skin type, body type, and acuity, and the device will select the correct dose to be administered. These settings can then be saved in preparation for future sessions and adjusted as necessary.


  1. Simunovic Z. (1996). Low level laser therapy with trigger points technique: a clinical study on 243 patients. Journal of clinical laser medicine & surgery, 14(4): 163–167.
  2. Kheshie, A. R., Alayat, M. S., & Ali, M. M. (2014). High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers in medical science, 29(4): 1371–1376.
  3. Kitchen, S. S. & Partridge, C. J. (1991). A Review of Low Level Laser Therapy: Part I: Background, Physiological Effects and Hazards. Physiotherapy 77(3): 161-168.

What can shock wave therapy be used to treat?

Focused shock wave (F-SW) therapy and radial pressure wave (RPW) therapy have been shown to stimulate the body’s natural healing process, with positive effects on bone and tendon repair, as well as tissue regeneration26. But how can these effects be applied practically to treat patients?


Tendon pathologies – hamstrings, Achilles tendon, patellar tendon, shoulder ‘rotator cuff’

Tendon pathologies – hamstrings, Achilles tendon, patellar tendon, shoulder ‘rotator cuff’

F-SW and RPW While it was a long-held belief that chronic tendons were not capable of repair, studies have shown that F-SW is effective in significantly stimulating the growth indicators associated with tendon, bone, and tendon-bone interface1,2. Positive outcomes have also been recorded with RPW treatment3.  

Frozen shoulder

F-SW and RPW Frozen shoulder is an idiopathic and progressive disease, identified by pain and decreased range of motion (ROM) of the shoulder and shoulder joint capsule fibrosis. The use of F-SW seems to have positive effects on treatment, quicker return to daily activities, and quality-of-life improvement on frozen shoulder4. RPW has also been shown to be effective5.

Calcifications F-SW and RPW Both F-SW and RPW can provide positive results in reducing calcification, with improvements recorded in shoulder pain, range of motion, and function, while combining the two has been shown to provide even better results6.  

Tennis elbow

F-SW and RPW  Tennis elbow, or lateral epicondylitis, is a common source of pain among manual workers. It has been demonstrated that F-SW was more effective than ultrasound therapy for improving pain and grip strength when treating tennis elbow, and also yielded better subjective evaluation7. Additionally, RPW therapy has been shown to yield higher improvements than steroid injections in treating lateral epicondylitis8.

Carpal Tunnel Syndrome F-SW and RPW Positive outcomes have been observed for pain symptoms, functional outcomes, and median nerve activity9.  

Chronic neck pain F-SW and RPW F-SW is more effective than ultrasound for improvement of myofascial pain syndrome, and equally effective as dry needling and laser therapy. It is also less invasive and less prone to adverse effects or allergic reactions than those conventional therapies10. Trigger point treatment with RPW used in combination with physical therapy has also been shown to relieve neck and shoulder pains11. However, it is important to mention that the anterior cervical area is contraindicated for localized shock wave therapy, and that only experienced clinicians should consider such treatments, as care must be taken to avoid neurovascular bundles.

Low back pain

F-SW and RPW Studies have shown that RPW added to conventional physiotherapy and core stability exercises has a significant effect on the reduction of chronic low back pain and the improvement of functional condition compared to a conventional physiotherapy program12. F-SW has also proven effective13.

Muscle hypertonia F-SW and RPW It has been demonstrated that both F-SW and RPW are effective in reducing muscle spasticity and improving motor recovery after stroke14, while RPW has also shown positive results in reducing pain and muscle tone in multiple sclerosis patients as part of a rehabilitation program15.  

Hip pain

F-SW and RPW While low-energy shock wave interventions cannot be used to treat hip conditions such as avascular necrosis or intracapsular pathology, RPW has been shown to be effective in treating greater trochanter hip pain16,17. F-SW appears to be effective for aiding in pain relief and functional recovery in patients with osteonecrosis of the hip18.

Knee osteoarthritis

F-SW F-SW has been proven effective for improving pain and function in knee OA, with medium energy values having significantly greater effect than low energy19,20.  

Shin pain (‘splints’) F-SW and RPW Traditional treatment of medial tibial stress syndrome (MTSS) is generally lengthy, associated with frequent recurrences, and in some cases, an unacceptable degree of improvement. In one study, a single application of F-SW treatment in combination with a specific exercise programme accelerated clinical and functional recovery from MTSS21. Adding RPW to standard home exercise therapy has been shown to offer significantly more improvement of pain, degree of recovery, and return to sports22.

Plantar fasciitis

F-SW and RPW F-SW has been shown effective in reducing heel pain associated with chronic plantar fasciitis23. RPW therapy has been demonstrated to improve pain, function, and quality of life in patients with recalcitrant plantar fasciitis24.  

Erectile dysfunction F-SW The number of studies of low-intensity focused shock wave therapy for erectile dysfunction (ED) have increased dramatically in recent years, with results indicating F-SW significantly improves ED and the efficacy can last up to 3 months and more. Furthermore, it may have the potential to be the first-choice non-invasive treatment for patients with ED25.  

Wound healing F-SW It has been well established that, through the principle of ‘mechanotransduction’ (the process by which a mechanical stimulus is converted into a set of biochemical reactions and a cellular response), F-SW can positively influence the chain of biological reactions that lead to tissue regeneration and healing26.  

Diabetic foot F-SW As with wound healing in general, F-SW as an adjunct to standard wound care has been shown to significantly reduce the size and the healing time for wounds associated with chronic diabetic foot ulcers27.  

Cellulite RPW RPW therapy is well established in the aesthetics market, having been shown to be an effective treatment for improving the appearance of cellulite, with significant improvement recorded in skin firmness and structure28.  


  1. Notarnicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J. 2012 Jun 17;2(1):33-7.
  2. Waugh CM, Morrissey D, Jones E, Riley GP, Langberg H, Screen HR. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cell Mater. 2015 May 15;29:268-80; discussion 280.
  3. Rompe JD, Maffulli N. Repetitive shock wave therapy for lateral elbow tendinopathy (tennis elbow): a systematic and qualitative analysis. Br Med Bull. 2007;83:355-78.
  4. Vahdatpour B, Taheri P, Zade AZ, Moradian S. Efficacy of extracorporeal shockwave therapy in frozen shoulder. Int J Prev Med. 2014 Jul;5(7):875-81.
  5. Hussein AZ, Donatelli RA. () The efficacy of radial extracorporeal shockwave therapy in shoulder adhesive capsulitis: a prospective, randomised, double-blind, placebo-controlled, clinical study. European Journal of Physiotherapy. 2016; 18:1, 63-76,
  6. Abo Al-Khair MA, El Khouly RM, Khodair SA, Al Sattar Elsergany MA, Hussein MI, Eldin Mowafy ME. Focused, radial and combined shock wave therapy in treatment of calcific shoulder tendinopathy. Phys Sportsmed. 2020 Dec 6:1-8.
  7. Yan C, Xiong Y, Chen L, Endo Y, Hu L, Liu M, Liu J, Xue H, Abududilibaier A, Mi B, Liu G. A comparative study of the efficacy of ultrasonics and extracorporeal shock wave in the treatment of tennis elbow: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2019 Aug 6;14(1):248.
  8. Beyazal MS et al. (Turkey). Comparison of the effectiveness of local corticosteroid injection and extracorporeal shock wave therapy in patients with lateral epicondylitis. J Phys Ther Sci. 2015 Dec;27(12):3755-8.
  9. Kim JC, Jung SH, Lee SU, Lee SY. Effect of extracorporeal shockwave therapy on carpal tunnel syndrome: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019 Aug;98(33):e16870.
  10. Zhang Q, Fu C, Huang L, Xiong F, Peng L, Liang Z, Chen L, He C, Wei Q. Efficacy of Extracorporeal Shockwave Therapy on Pain and Function in Myofascial Pain Syndrome of the Trapezius: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. 2020 Aug;101(8):1437-1446.
  11. Damian M, Zalpour C. Trigger point treatment with radial shock waves in musicians with nonspecific shoulder-neck pain: data from a special physio outpatient clinic for musicians. Med Probl Perform Art. 2011 Dec;26(4):211-7.
  12. Walewicz K, Taradaj J, Dobrzyński M, Sopel M, Kowal M, Ptaszkowski K, Dymarek R. Effect of Radial Extracorporeal Shock Wave Therapy on Pain Intensity, Functional Efficiency, and Postural Control Parameters in Patients with Chronic Low Back Pain: A Randomized Clinical Trial. J Clin Med. 2020 Feb 19;9(2):568.
  13. Hong JO, Park JS, Jeon DG, Yoon WH, Park JH. Extracorporeal Shock Wave Therapy Versus Trigger Point Injection in the Treatment of Myofascial Pain Syndrome in the Quadratus Lumborum. Ann Rehabil Med. 2017 Aug;41(4):582-588.
  14. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, Rosińczuk J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults – Current Evidence and Qualitative Systematic Review. Clin Interv Aging. 2020 Jan 6;15:9-28.
  15. Marinelli L, Mori L, Solaro C, Uccelli A, Pelosin E, Currà A, Molfetta L, Abbruzzese G, Trompetto C. Effect of radial shock wave therapy on pain and muscle hypertonia: a double-blind study in patients with multiple sclerosis. Mult Scler. 2015 Apr;21(5):622-9.
  16. Rompe JD, Segal NA, Cacchio A, Furia JP, Morral A, Maffulli N. Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter pain syndrome. Am J Sports Med. 2009 Oct;37(10):1981-90.
  17. Furia JP, Rompe JD, Maffulli N. Low-energy extracorporeal shock wave therapy as a treatment for greater trochanteric pain syndrome. Am J Sports Med. 2009 Sep;37(9):1806-13.
  18. Zhao W, Gao Y, Zhang S, Liu Z, He L, Zhang D, Li W, Meng Q. Extracorporeal shock wave therapy for bone marrow edema syndrome in patients with osteonecrosis of the femoral head: a retrospective cohort study. J Orthop Surg Res. 2021 Jan 7;16(1):21.
  19. Lee JK, Lee BY, Shin WY, An MJ, Jung KI, Yoon SR. Effect of Extracorporeal Shockwave Therapy Versus Intra-articular Injections of Hyaluronic Acid for the Treatment of Knee Osteoarthritis. Ann Rehabil Med. 2017 Oct;41(5):828-835.
  20. Kim JH, Kim JY, Choi CM, Lee JK, Kee HS, Jung KI, Yoon SR. The Dose-Related Effects of Extracorporeal Shock Wave Therapy for Knee Osteoarthritis. Ann Rehabil Med. 2015 Aug;39(4):616-23.
  21. Gomez Garcia S, Ramon Rona S, Gomez Tinoco MC, Benet Rodriguez M, Chaustre Ruiz DM, Cardenas Letrado FP, Lopez-Illescas Ruiz Á, Alarcon Garcia JM. Shockwave treatment for medial tibial stress syndrome in military cadets: A single-blind randomized controlled trial. Int J Surg. 2017 Oct;46:102-109.
  22. Rompe JD, Cacchio A, Furia JP, Maffulli N. Low-energy extracorporeal shock wave therapy as a treatment for medial tibial stress syndrome. Am J Sports Med. 2010 Jan;38(1):125-32.
  23. Gollwitzer H et al. (Technische Universität München, Munich, Germany). Clinically relevant effectiveness of focused extracorporeal shock wave therapy in the treatment of chronic plantar fasciitis: a randomized, con­trolled multicenter study. J Bone Joint Surg Am. 2015 May 6;97(9):701-8.
  24. Gerdesmeyer L, Frey C, Vester J, Maier M, Weil L Jr, Weil L Sr, Russlies M, Stienstra J, Scurran B, Fedder K, Diehl P, Lohrer H, Henne M, Gollwitzer H. Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med. 2008 Nov;36(11):2100-9.
  25. Lu Z, Lin G, Reed-Maldonado A, Wang C, Lee YC, Lue TF. Low-intensity Extracorporeal Shock Wave Treatment Improves Erectile Function: A Systematic Review and Meta-analysis. Eur Urol. 2017 Feb;71(2):223-233.
  26. d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015 Dec;24(Pt B):147-53.
  27. Omar MT, Alghadir A, Al-Wahhabi KK, Al-Askar AB. Efficacy of shock wave therapy on chronic diabetic foot ulcer: a single-blinded randomized controlled clinical trial. Diabetes Res Clin Pract. 2014 Dec;106(3):548-54.
  28. Russe-Wilflingseder K, Russe E, Vester JC, Haller G, Novak P, Krotz A. Placebo controlled, prospectively randomized, double-blinded study for the investigation of the effectiveness and safety of the acoustic wave therapy (AWT(®)) for cellulite treatment. J Cosmet Laser Ther. 2013 Jun;15(3):155-62.

What are the effects of shock wave therapy?

Shock wave therapy – a term that continues to be used to encompass both focused shock wave and radial pressure wave therapies – can be used to stimulate the body’s natural healing process, with positive effects demonstrated on bone and tendon repair and tissue regeneration1. But how does this work?

Both focused shock waves and radial pressure waves influence cellular activity by mechanotransduction, where the mechanical energy of an acoustic wave is converted into biochemical energy in the cell and extracellular matrix1.

With focused shock wave (F-SW) therapy, this is primarily achieved through the effects of cavitation, whereas radial pressure wave (RPW) therapy uses pressure waves to cause cellular change.

What is cavitation?

Cavitation occurs during the tensile phase of a shock wave. The negative pressure created by the wave generates gas-filled bubbles in water at room temperature, which are normally only seen in boiling water.

When these bubbles are concentrated in a small area, such as in F-SW therapy, they generate secondary pressure waves in a process known as “stable cavitation.” When the bubbles burst, they release energy at the focal point of the application. This “microtrauma” stimulates the body’s self-healing ability and leads to tissue regeneration2,3.

If the bubbles are encouraged to expand, they will continue to store energy until they become so large that they implode, releasing a large amount of energy in a microjet. This is known as “unstable cavitation,” and can be used to break down kidney stones4,5.

While some cavitation also occurs during RPW therapy, the level is only superficial, and not thought to be significant.

How shock wave therapy helps the body to heal

F-SW and RPW therapies are pro-inflammatory modalities which can be used to “reboot” the healing process in stalled, chronic conditions1.

The normal healing process of the body occurs in four stages. First the body responds to injury by bleeding, which is then followed by inflammation. Within a few hours to days, the third stage begins, known as proliferation, where new tissue is created to rebuild the wound. Finally, after a few weeks, the remodelling stage starts, during which the wound fully closes.

Of all these stages of the healing cascade, the most important is inflammation. Without it, proliferation and remodelling will not take place. In chronic conditions, something has gone wrong during the later proliferation and remodelling stages of the normal healing process, preventing it from progressing. Like a computer with a serious error, this process needs to be rebooted for progress to be made by using the pro-inflammatory action of F-SW or RPW therapy.

Other physiological effects of shock wave therapy

Along with its influence on inflammation, shock wave therapy has been shown to have a number of other physical effects on the body:

New blood vessel formation

Due to microtraumas caused by shock wave therapy, there is a significant increase in the expression of growth factors such as eNOS, VEGF, PCNS and BMP. These growth factors are involved in the process of neovascularization, where arterioles are stimulated to form and grow, which has a positive effect on improved blood supply, bone and tendon repair, and tissue regeneration6.

Collagen production

Shock wave therapy stimulates procollagen synthesis, necessary for the repair of damaged musculoskeletal and ligament structures. It forces the newly created collagen fibers into a longitudinal structure, making the newly formed tendon fibers denser and stiffer, with a firmer structure7.  

Tenocyte proliferation

Shock wave therapy leads to an increase in transforming growth factor beta 1 (TGF-β 1), which is known to regulate tendon repair8.

Fibrotic tissue and scar remodelling

Shock wave therapy alters the expression of fibrosis-related molecules in fibroblasts, which affects scar remodelling and resorption1.

Osteoblast and osteoclast activity

Alongside TGF-β 1, fibroblast growth factor 2 (FGF2) is also increased by shock wave therapy, and together they are influential in bone healing1,9.


RPW therapy has a confirmed effect in improving the symptoms of pain10.

Reducing hypertonia in spastic muscles

Both F-SW and RPW have been proven effective here11, with RPW particularly effective in aiding increased range of movement12.

To learn more about the effects and applications of shock wave therapy:


  1. d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015 Dec;24(Pt B):147-53. 
  2. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res. 2001 Jun;(387):8-17.
  3. Császár NB, Angstman NB, Milz S, Sprecher CM, Kobel P, Farhat M, Furia JP, Schmitz C. Radial Shock Wave Devices Generate Cavitation. PLoS One. 2015 Oct 28;10(10):e0140541.
  4. Chaussy C, Brendel W, Schmidt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268, 1980.
  5. Streem SB. Contemporary clinical practice of shock wave lithotripsy: a reevaluation of contraindications. J Urol. 1997 Apr;157(4):1197-203.
  6. Wang CJ, Wang FS, Yang KD. Biological mechanism of musculoskeletal shockwaves. ISMST Newsletter 2006, 1 (I), 5-11.
  7. Vetrano M, d’Alessandro F, Torrisi MR, Ferretti A, Vulpiani MC, Visco V. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc. 2011 Dec;19(12):2159-68.
  8. Berta L, Fazzari A, Ficco AM, Enrica PM, Catalano MG, Frairia R. Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-beta1 and for collagen types I and III. Acta Orthop. 2009 Oct;80(5):612-7.
  9. Frairia R, Berta L. Biological effects of extracorporeal shock waves on fibroblasts. A review. Muscles Ligaments Tendons J. 2012 Apr 1;1(4):138-47.
  10. Rompe JD, Hope C, Küllmer K, Heine J, Bürger R. Analgesic effect of extracorporeal shock-wave therapy on chronic tennis elbow. J Bone Joint Surg Br. 1996 Mar;78(2):233-7.
  11. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, Rosińczuk J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults – Current Evidence and Qualitative Systematic Review. Clin Interv Aging. 2020 Jan 6;15:9-28.
  12. Marinelli L, Mori L, Solaro C, Uccelli A, Pelosin E, Currà A, Molfetta L, Abbruzzese G, Trompetto C. Effect of radial shock wave therapy on pain and muscle hypertonia: a double-blind study in patients with multiple sclerosis. Mult Scler. 2015 Apr;21(5):622-9.

What is the difference between focused shock wave (FSW) and radial pressure wave (RPW) therapy?

Shock wave therapy is not a new modality; in its modern electronic form it has been around since the early 1980s, where it was first shown to have beneficial effects on treating kidney and biliary stones, and later on bone and wound healing.

However, despite now being an established medical intervention, questions still persist around the specifics of shock wave therapy. This article explains the difference between focused shock wave (F-SW) and radial pressure wave (RPW) therapy.

What are shock waves?

A shock wave is defined as a moving sound source travelling at more than the speed of sound. A stationary sound wave emits acoustic pressure waves that are evenly distributed in all directions. However, when the sound source is moving, the sound waves in front are compressed, and if the source moves faster than the speed of sound, the compressed waves overlap and create a shock wave, which is heard as a sonic boom.

It was noted that shock waves travel much better through water than they do through air, and that they could affect the body on a cellular level, thereby stimulating its intrinsic healing mechanism. This led to efforts to harness this phenomenon for medical applications, and the resulting technology became commonly known as shock wave therapy.

A brief history of shock wave therapy

Shock wave therapy as we know it first came into practical use in the 1980s, in the form of focused shock wave (F-SW). As with the emergence of any new intervention, there was immediately a great deal of interest – and hype – surrounding it.

Researchers began conducting clinical trials, but with no real guidelines on parameters, results were conflicting. At the same time, therapists were treating through trial and error, with outcomes ranging from very good to poor. This led to a drop in interest during the 1990s, with practitioners becoming disillusioned with F-SW, due also in part to the relative high cost of the devices.

However, with the advent of modified modalities, better research, and the technology to study the therapeutic effects on a molecular level, interest in shock wave therapy was rekindled around the end of the 1990s. Manufacturers began building more affordable clinic-based F-SW devices, and therapists became better at incorporating shock wave therapy into their treatments, all of which helped lead to better outcomes for patients.

Then, towards the end of the 1990s, a new technology emerged: radial pressure wave (RPW) therapy. Just as F-SW machines were becoming more affordable, RPW devices turned out to be even cheaper to produce and answered the demand from clinicians for a shock wave technology that could be used to treat on a more superficial level over larger areas.

Now shock wave therapy is an accepted and valued intervention that generates positive outcomes, supported by a wide range of clinical studies, and with far more affordable devices available to practitioners.

The differences between focus shock wave and radial pressure wave therapy

While focused shock wave (F-SW) therapy and radial pressure wave (RPW) therapy are often referred to together as ‘shock wave’, or extracorporeal shock wave therapy, only one is truly worthy of the definition.

F-SW delivers maximum energy at a focal point in the tissue at a depth of between 4-6cm, though some devices can achieve therapeutic energy values down to 12cm. Conversely, RPW delivers maximum energy at the surface of the skin, which then travels radially into the body up to a depth of 5-6cm. If we look at the physical properties of the two interventions, we can see they are completely different (Fig. 1).

Firstly, a focused shock wave will produce a pressure peak in the range of 10-100 Mega-Pascals (MPa), compared to the positive peak pressure of 0.1-1 MPa for a radial pressure wave – 100 times the amount of energy. Furthermore, the time taken for a focused shock wave to reach that peak, as well as its overall pulse duration, is far shorter than that of an RPW.

Therefore, unlike F-SW, a radial pressure wave is not a ‘true’ shock wave.

Additionally, while both technologies involve the conversion of electrical energy into mechanical energy, the ways in which focused shock waves and radial pressure waves are generated and delivered are also different.

F-SW machines generate shock waves using either electrohydraulic, electromagnetic, or piezoelectric technology. The shock waves are generated in water contained in a standoff attached to a handheld applicator. These waves are then focused through a lens and transmitted into the tissue.

Most RPW machines generate radial pressure waves using either oil or air compressors. During use, the compressed air is released via a valve into the barrel of a hand-held applicator which contains a small projectile. As the valve opens and closes very quickly, the projectile is driven by the compressed air into a transmitter at the end of the applicator, where the kinetic energy is converted into acoustic shock waves.

To learn more about the effects and applications of shock wave therapy:

Treating low back pain with electrotherapy

Among the many impacts of the coronavirus pandemic, one of the least publicised is that of low back pain. Far more of us are currently working from home, often without the necessary ergonomic support of chairs and desks designed to prevent back problems, and as a result, physiotherapists are seeing a growing number of patients presenting with low back pain.

One way of treating low back pain is with electrotherapy. The practice takes advantage of the high excitability of nerve fibres, stimulating them with electrical pulses to achieve a number of therapeutic effects. As well as pain relief, this includes stimulation to help strengthen muscles, meaning it can be used to address both the symptoms and causes of low back pain.

Treating the SYMPTOMS of low back pain with electrotherapy

Most acute low back pain is a result of injury to the muscles, ligaments, joints, or discs. The body’s reaction to injury is to instigate an inflammatory healing response, which can cause severe pain.

TENS (Transcutaneous Electrical Nerve Stimulation) uses electrical pulses to provide pain relief by blocking pain signals from reaching the brain. High frequency (HF) TENS, or sensory stimulation, uses pulses of 80-100 Hz and works via the gate control mechanism, inhibiting the transmission of pain signals to the brain while producing a pleasant tingling sensation. As a result, HF TENS is effective for providing patients with relief from the symptoms of lumbar pain.1

However, rather than just treat the cause of the pain, it’s important to also address the cause of the injury. Thankfully, electrostimulation also has an answer for this.

Treating the CAUSES of low back pain with electrotherapy

Sitting slumped over a desk while you work puts increased strain on the muscles and ligaments in your back, which can then lead to injury and low back pain. To address the cause of posture-related low back pain, we need to restore balance between the trunk flexors and extensors and strengthen our paraspinal and abdominal muscles to improve spinal stability and help us sit up straight. This is where NMES can help.2,3

NMES (Neuro Muscular Electrical Stimulation) uses electrical pulses to produce muscle contractions, mirroring the impulse sent from the brain. NMES can be used as a standalone treatment, but is most effective when used in combination with voluntary exercise such as proprioceptive or functional rehabilitation.

By safely controlling the contractions, the muscles can be made to exert themselves much more than the patient would be capable of voluntarily, and without placing additional stress on joints. Additionally, NMES can help the patient to recruit the deep lumbar stabilizers.3,4 This allows patients to effectively and safely strengthen their trunk muscles during exercise, thereby helping to address the causes of low back pain.2,3

However, if symptoms remain, functional rehabilitation for low back pain can still be carried out by combining NMES and TENS in a single treatment. One device with this function is Chattanooga’s Intelect Mobile.2

Intelect Mobile 2 – the next generation in electrotherapy

Intelect Mobile 2 is an innovative device designed to provide clinicians with everything they need for effective electrotherapy treatment, and comes in three different configurations, STIM, ULTRASOUND, and COMBO.

All three options include an intuitive touchscreen user interface, a library of suggested protocols, and Bluetooth connectivity for easy software updates. And as the name suggests, the device is truly mobile, enabling it to be easily carried or mounted on a wheeled cart.

Intelect Mobile 2 STIM and COMBO provide 2-channel electrotherapy with over 20 different waveforms, offering therapists multiple treatment options. For instance, when treating a patient with low back pain, Channel 1 can be used to deliver TENS treatment for pain relief, while Channel 2 provides muscle stimulation to support functional rehabilitation exercises. Or therapeutic ultrasound can be used as an adjunct pain-relieving modality.5

Altogether, Intelect Mobile 2 is an excellent option for therapists interested in using electrostimulation for treating not only low back pain, but also a range of other neuromuscular conditions.


  1. Jauregui JJ, Cherian JJ, Gwam CU, Chughtai M, Mistry JB, Elmallah RK, Harwin SF, Bhave A, Mont MA. A Meta-Analysis of Transcutaneous Electrical Nerve Stimulation for Chronic Low Back Pain. Surg Technol Int. 2016 Apr;28:296-302.
  2. Durmus D, Akyol Y, Alayli G, Tander B, Zahiroglu Y, Canturk F. Effects of electrical stimulation program on trunk muscle strength, functional capacity, quality of life, and depression in the patients with low back pain: a randomized controlled trial. Rheumatol Int. 2009 Jun;29(8):947-54.
  3. Baek SO, Cho HK, Kim SY, Jones R, Cho YW, Ahn SH. Changes in deep lumbar stabilizing muscle thickness by transcutaneous neuromuscular electrical stimulation in patients with low back pain. J Back Musculoskelet Rehabil. 2017;30(1):121-127.
  4. Coghlan S, Crowe L, McCarthypersson U, Minogue C, Caulfield B. Neuromuscular electrical stimulation training results in enhanced activation of spinal stabilizing muscles during spinal loading and improvements in pain ratings. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7622-5.
  5. Goren A, Yildiz N, Topuz O, Findikoglu G, Ardic F. Efficacy of exercise and ultrasound in patients with lumbar spinal stenosis: a prospective randomized controlled trial. Clin Rehabil. 2010 Jul;24(7):623-31.